Algebraic Topology

Algebrait Topology builds "functions" (actually functors)

(Topological spaces,)
$$\Rightarrow$$
 (algebraic Hungs,) vector spaces (continuous maps) algebraic maps)

the main point is to show two topological spaces are different

e.g.
$$\mathbb{R}^n \not\subseteq \mathbb{R}^m$$
 if $n \neq m$

homeomorphic

 $\mathbb{R}^3 - \bigcirc \not\subseteq \mathbb{R}^3 - \bigcirc \bigcirc$

but can use alg. top. for many other things

- 1) maps between spaces
 - · does a given space M embed in N?

 eg. for what m does RP^n embed in R^m ?

 (answer not known in general!)
 - · can you "lift" a map?

1.e given
$$f: A \rightarrow B$$
 and $\pi: E \rightarrow B$
does there exist $f: A \rightarrow E$ s.t. $\pi \circ \tilde{f} = f$?

$$\begin{cases}
f & \exists E \\
\uparrow & \exists \pi
\end{cases}$$

$$A \xrightarrow{f} B$$

this includes 3 of sections of bundles

This includes 3 of sections of bundles

• Fixed points of maps
e.g. Brower fixed point theorem:

every map $D^2 \rightarrow D^2$ has a fixed pt

2) Group actions
eg Which finite groups act freely on 5ⁿ?

3) Group theory

eg Every subgroup of a free group is free $[F_n, F_n]$ is not finitely generated (n>1) free group rank n

4) Algebra
eg prove the fundamental theorem of algebra

In this course we develop

- 1) fundamental group 71, (X)
 and covering spaces
- 2) Homology groups H_k(x) k=0,1,2,...
- 3) Cohomology ring $H^*(X) = \bigoplus H^k(X)$

but before we start we will develop so important ideas that will be used throughout the course

O. Homotopy and CW Complexes

A. <u>CW complexes</u>

We develop alg. top. for all topological spaces, but a convenient (and very large) class of spaces to study are CW complexes

let $D^n \subset \mathbb{R}^n$ be the unit disk $5^{n-1} = \partial D^n$ its boundary

given \cdot Y a topological space and maps will be assumed to be \cdot a: $s^{n-1} \rightarrow Y$ a continuous map continuous even if the space obtained from Y by attaching an n-cell $(\underline{via}\ a)$ is

 $Y \cup_{\alpha} D^{n} = Y \perp D^{n} / \{x \sim a(x)\} / \{$

Y Ua D' is given the quotient topology

An <u>n-complex</u>, or <u>n-dimentional</u> <u>CW complex</u> is defined inductively by

a (-1) complex is Ø

an n-complex X^n is any space obtained from an (n-1)-complex X^{n-1} by attaching n-cells

if $X = \bigcup_{n=0}^{\infty} x^n$, where X^n is an n-complex obtained by attaching n-cells to X^{n-1} the we say X is an infinite dimensional complex we say a CW complex is finite if it only involves a finite number of cells

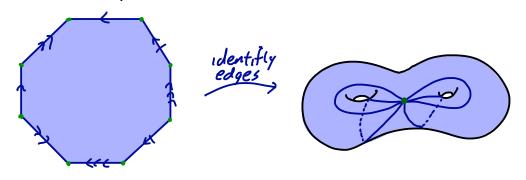
the <u>k-skeleton</u> of X, is the union $X^{(k)}$ of all 1-cells for $1 \le k$ Remarks:

- 1) C in CW stands for closure finite and just means the closure of each cell is contained in the union of finitely many cells
- 2) W in CW stands for weak topology and means a set S in X is open $\Longrightarrow S \cap X^{(h)}$ open for all k (this is automatic if X is finite dimensional)
- 3) CW complexes are Hausdorff spaces (see Hatcher)

 Exercise: Show the product of CW complexes is a CW complex.

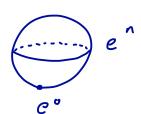
Examples:

- 1) I-dim CW complexes are graphs
- 2) Surfaces are CW complexes



3)
$$5^n = e^n e^n$$

ei an 1-cell



C

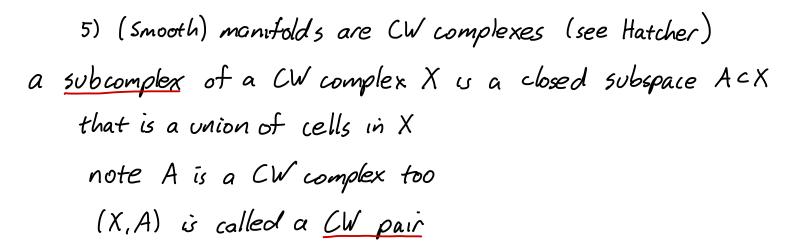
= 5" with antipodes identified

= D' with antipodes on 2D' identified

= RPn-1 with Dn attached

since RP°= {pt} we see inductively that RP°= e°ve've²v...ve° is a CW-complex

Exercise: Show \mathbb{CP}^n is a \mathbb{CW} complex $\mathbb{CP}^n = e^o u e^z u \dots u e^{zn}$



B Homotopy

A fundamental notion in algebraic topology is homotopy and homotopy equivalence

let X and Y be topological spaces two maps $f,g:X\to Y$ are homotopic, $f^{n}g$, if there is a continuous map

Remarks:

1) Φ gives a family of maps $\Phi_t: X \to Y$ where $\Phi_t(x) = \Phi(x,t)$ these maps are "continuous in t" in the sence that Φ is continuous.

> so maps are homotopic if we can continuously deform one into the other

- 2) if ACX, then we say the homotopy from f to g is relative to A, denoted f ~ 9, if in addition to above $\underline{\Phi}(x,t) = f(x) = g(x) \quad \forall x \in A, t \in [0,1]$
- 3) If $A \in X$ and $B \in Y$, then the notation $f:(X,A) \to (Y,B)$ means $f: X \rightarrow Y$ is a map and $f(A) \subset B$ we say f is a map of pairs

if $f,g:(X,A) \rightarrow (Y,B)$, then they are homotopic (as maps of pairs) if I a homotopy st. each of is a map of pairs

Example: for any space X any map $f: X \rightarrow \{0,1\}$ is homotopic to the constant map g(x)=0

the homotopy is $\Phi: X \times [0,1] \longrightarrow [0,1]$ $(x,t) \longmapsto (1-t) f(x)$

Exercise: homotopy is an equivalence relation on maps X-> Y let C(X,Y) = { continuous maps X → Y} [x,Y] = C(x,Y)/ homotopy = {homotopy classes of maps X -> Y} Examples: i) for any X [X, [0,1]] = {9(x)=0} 2) for any X [{*}, X] = { path components of X} Tone point space We call a space X pointed if it has a "base point" x = X (just some prechosen fixed point) given two pointed spaces (X, x.), (Y, y.) [x, y] = {homotopy classes of maps of pairs (X, {x,}) - (X, {x,})} let yo be the north pole in the n-sphere 5" (r.e. 5 = unit sphere in Rn+1 y₀ = (0,0, ... 0, 1)) the nth homotopy group of a (pointed) space (X, x6) is $\mathcal{T}_n(X, x_o) = [5, X]_o$

these are all groups and we will spend some time studying T.(X,x) which is also called the furdamental group.

Auestron: For what Y is [Y, X], "naturally" a group for all X?

For what Y is [X,Y] "naturally" a group for all X?

note: given a map $f: X_1 \rightarrow X_2$ there is a natural function $f_*: [Y_1X_1] \rightarrow [Y_1X_2]: g \mapsto f \circ g$

and

 $f^*: [X_2, Y] \rightarrow [X_1, Y]: g \mapsto g \circ f$

(Proof: just compose homotopy with f)

Rmk: Natural in question above means fx, resp fx, is a homomorphism

We say $f:X \rightarrow Y$ is the <u>homotopy inverse</u> of $g:Y \rightarrow X$ if $f \circ g \sim id_Y$ and $g \circ f \sim id_X$

if $g: Y \to X$ has a homotopy inverse then we say g is a homotopy equivalence and we say X and Y are homotopy equivalent or have the same homotopy type and write $X \simeq Y$

Exercise: This is an equivalence relation

lemma 1:

The following are equivalent

- 1) X = Y
- 2) for any space Z there is a one-to-one correspondence $\phi_Z: [X,Z] \rightarrow [Y,Z]$

such that for all continuous maps $h: Z \to Z'$ $[x, Z] \xrightarrow{\varphi_Z} [Y, Z]$ $[h_* \circ]h_* \quad (commutes)$ $[x, Z'] \xrightarrow{\varphi_{Z'}} [Y, Z']$

3) for any space 2 there is a one-to-one correspondence
$$\phi^2: [2,x] \rightarrow [2,y]$$

$$\begin{bmatrix} z', x \end{bmatrix} \xrightarrow{\phi^2} \begin{bmatrix} z', y \end{bmatrix}$$

$$\downarrow h^* \qquad \qquad \downarrow h^*$$

$$\begin{bmatrix} z, x \end{bmatrix} \xrightarrow{\phi^2} \begin{bmatrix} z', y \end{bmatrix}$$

Proof: Exercise

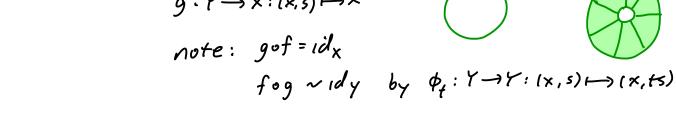
Kemark: So two spaces are homotopy equivalent iff homotopy classes of maps to and from the spaces are "naturally equivalent"

Examples:

0) if X and Y are homeomorphic, then they are homotopy equivalent.

1)
$$X = 5'$$
 is homotopy equivalent to $Y = 5' \times [0,1]$

indeed:
$$f: X \rightarrow Y: x \mapsto (x, 0)$$



2) A space X is called contractible it it has the homotopy type of a point.

e.g.
$$\mathbb{R}^n \simeq \{*\}$$
 (exercise)

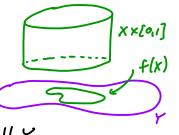
3) If $A \subset X$ then a <u>retraction</u> is a map $r: X \to A$ such that $r(x) = x \quad \forall x \in A$ a <u>deformation retraction</u> of X to A is a homotopy, rel A, from the identity on X to a retraction:

$$\phi_t: X \to X$$
 $t \in [0,1]$
 $\phi_o(x) = x$ $\forall x \in X$
 $\phi_i(X) \subset A$
 $\phi_i(x) = x$ $\forall x \in A \text{ and } t$

<u>note</u>: If X deformation retracts to A then $X \cong A$ indeed let

• ϕ_t be homotopy above • $i:A \longrightarrow X$ the inclusion map then i and ϕ_i are homotopy inverses $Since \quad \phi_i \circ i = id_A \quad and \quad 10 \quad \phi_i = \phi_i \sim \phi_i = id_X$

given spaces X, Y and a map $f: X \rightarrow Y$ the mapping cylinder M_f is



M4 = (X × [011]) 117/

where $(x, 1) \sim f(x)$

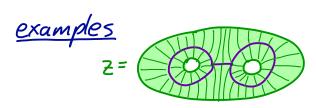
note: Mf deformation retracts to Y

indeed $\widetilde{\phi}_t$: $(x,s) \in X \times [0,1] \mapsto (x,(1-t)s+t) \in X \times [0,1]$ $y \in Y \longmapsto y \in Y$

induces maps $\phi_t: M_f \rightarrow M_f$ S.t. $\phi_0 = i \partial_{M_f}$ $\phi_t (M_f) \subset Y$ $\phi_t (y) = y \quad \forall y \in Y$

there are obvious inclusions $i: X \rightarrow M_f: x \mapsto (x, 0)$ $j: Y \rightarrow M_f: y \mapsto y \quad (y \text{ has homotopy} \text{ inverse } \phi)$ now $x \stackrel{f}{\Longrightarrow} Y$ and $j \circ f \sim i$

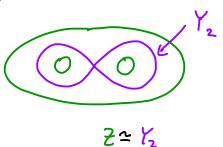
Slogan: Any map is an inclusion upto homotopy

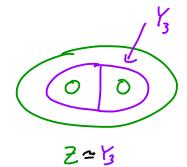


let $f: X \rightarrow Y$, given by following lines in picture note Ξ is homeomorphic to M_f

50 2 2 Y,

similarly





So Y = 1 = 13 even though it is not clear what the homotopy equivalence is!

Two criteria for homotopy equivalence

lemma 2:

If (X,A) is a CW pair, and A is contractible then $X \simeq X_A$ — collapse A to point

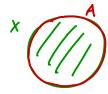
examples

1) X a graph A = any edge connecting distinct verticies \ \frac{\text{X}_A \simeq \text{X}}{A} so any connected graph is homotopy equivalent to a wedge of circles χ 2) Χ= = 5²/poles identified X/A=X=X/B 3)

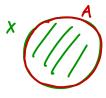
example:

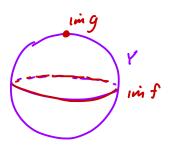
$$X = D^{n} \qquad A = \partial D^{n}$$
$$Y = S^{n}$$

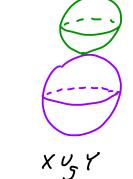
f: A -> Y map A to equator 9: A →Y constant map



 $X \cup_{\mathcal{F}} Y$







To prove both lemmas we need the homotopy extention property (HEP)

A space X and a subspace ACX has the HEP it whenever we have a map $F_o: X \rightarrow Y$ and a homotopy f: A -> Y of fo= Fola then we can extend the f_t to $F_t: X \to Y$

lemma 4:

A pair (X, A) has the HEP ⇔ (X x {0}) v(A x [0,1]) is a retract of X x [0,1]

see Hatcher for general case Proof: (=) we assume A is closed (not nec. but makes proof easier and given the retract r: Xx[0,1] -> (Xx[0]) (Ax[0,1]) most examples satisfy this) and any map $F_0: X \to Y$ and homotopy $f_t: A \to Y$ of $f_0 = F_0|_A$ note this defines a map $F:(X\times\{0\})\cup(A\times[0,1])\to Y$

Fis continuous since A is closed

now For: $X \times [0,1] \rightarrow Y$ is the desired homotopy!

(\Rightarrow) Consider the identity map $F: X \times [0] \cup A \times [0,1] \rightarrow X \times [0] \cup A \times [0,1]$ this gives $F_0: X \rightarrow X \times [0] \cup A \times [0,1]$ by $F|_X$ and $f_t: A \rightarrow X \times [0] \cup A \times [0,1]$ by $f_t = F|_{A \times \{e\}}$ so $HEP \Rightarrow \exists F_t: X \rightarrow X \times [0] \cup A \times [0,1]$ the F_t give a map $F_t: X \times [0,1] \rightarrow X \times [0,1] \rightarrow X \times [0,1]$ that is clearly a retraction F_t

lemma 5:

If (X,A) is a CW pair, then X×{0} u A×{0,1} is a Ideformation)

retract of X×{0,1}

In particular, (X,A) has the HEP

Proof:

Main point: for any disk D^n there is a deformation retraction of $D^n \times \{0,1\}$ to $D^n \times \{0\} \cup \{0\} \cup \{0\}$

 $\underline{Pf}: let \ D^{n} \subset \mathbb{R}^{n} = \mathbb{R}^{n} \times \{o\} \subset \mathbb{R}^{n+1}$ $50 \ D^{n} \times \{o,i\} \subset \mathbb{R}^{n+1}$ $let \ p = (o,0,...,o,2)$

given $x \in D^n \times \{0,1\}$ let $l_x = l_n \in through x and p$ and set $\widetilde{r}(x) = l_x \wedge (D^n \times \{0\}) \cup \partial D^n \times \{0,1\})$ unique point!

clear \tilde{r} is a retraction (need to chech continuous and $\tilde{r}_t = t\tilde{r} + (l-t) \operatorname{Id}_{D^*[0,1]}$ is a deformation retraction

we define r on $X^{(0)} \times [0,1] \longrightarrow (X \times \{0\}) \cup (A \times [0,1])$ as follows if a vertex $D^{\circ} \subset A$, then let r be the identity on $D^{\circ} \times [0,1]$ if $D^{\circ} \times A$, then let r send any point in $D^{\circ} \times [0,1]$ to $D^{\circ} = \{0,1\}$ in $X \times \{0\}$

now inductively assume we have defined r on the (k-1) skeleton of X, that is $X^{(k-1)} \times \{o,i\} \to X \times \{o\} \cup A \times \{o,i\}$

for each k-cell D^k of Xif $D^k \in A$ then let r be the identity map on $D^k \times [0,i]$ if D^k is not a cell in A then note $\partial D^k \times [0,i] \rightarrow X^{(k-1)} \times [0,i]$ where r is already defined

and we have an inclusion " $D^{n} \xrightarrow{i} X^{(n-1)} \cup D^{n} \xrightarrow{q} X^{(n-1)} \cup D^{n} (x \in D^{n}) \sim a(x) \in X^{(n-1)}$

where $a:\partial D^n \to X^{(n-1)}$ is the attaching map for D^n

so we have a map $D^n \times \{0\} \xrightarrow{J} X \times \{0\}$ 1.8 Γ is defined on $(D^n \times \{0\}) \cup (\partial D^n \times \{0\})$

so composing \tilde{r} above with the above maps extends r over $D^n \times [a,1]$ and eventually all of $X^{(n)} \times [a,1]$

<u>Proof of lemma 2</u>: Actually we show for any pair (X_iA) satisfying ITEP with A contractible, the quotient map $q: X \to X/A$ is a homotopy equivalence

for this note there is a homotopy $f_t:A \rightarrow A \subset X$ st. $f_o = id_A$ note $f_o = F_o|_A$ where $F_o = id_X$ $f_i = constant$ map

50 HEP gives a homotopy
$$F_t:X\to X$$
 extending f_t
Since $F_t(A)$ CA for all t we get maps $\overline{F}_t: X_A \to X_A$
 $\times \xrightarrow{F_t} X$
 $Y_A \xrightarrow{\overline{F}_t} X_A$

also $F_{i}(A) = pt$ so F_{i} also gives a map $h: X/A \rightarrow X$

you can easily check hog = F, and goh = F.

Proof of lemma 3:

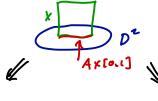
Recall we have (X,A) and maps $f,g:A \rightarrow Y$ that are homotopic

let $F: A \times [0,1] \rightarrow Y$ be the homotopy now let $M_F = X \times [0,1] \cup_F Y$

Claim M_F deformation retracts to XufY and XugY

:: XufY=XugY

from lemma 5 we have a deformation retraction of $X \times \{0,1\}$ to $X \times \{0,1\}$



given this we see the above deformation retraction induces a deformation retraction of MF to Xu, Y

Proof of lemma 5 also shows X×[0,1] deformation retracts
onto X×{1} U A×{0,1}

exercise: (X x {1}) u A x {0,1]) u Y = X u y Y

so as above $M_F = X u Y$